
For the last few years, Lean thinking
has been applied to software devel-

opment, introducing Lean software
development [1-3]. The roots of Lean
thinking are in the Toyota Production
System (TPS) [4]. The TPS has two pil-
lars: autonomation (Jidoka) and just-in-
time. Autonomation is also described as
automation with a human touch and is based
on the idea that machines automatically
stop when a mistake is detected so that
it can be fixed immediately and no
material, effort, or electricity is wasted.
A CI system brings autonomation to
Lean software development.

Software integration is often a prob-
lematic area in product development. CI
is a common technique used to over-
come these traditional problems. CI
means that developers integrate their
software as frequently as possible (at
least daily), in small steps (small batch-
es), to prevent sudden surprises.
Increasing the integration frequency
requires making it easier to integrate,
and often means reducing processes
such as formal inspections and
approvals. (Peer reviews and personal
code reviews are certainly still valuable.)
Different mechanisms need to be in
place to ensure the quality of the inte-
grations. This is where a CI system pro-
vides the support – the safety net – that
enables CI. A CI system always com-
piles the software and runs all the tests
[5]. When one step fails, the system
stops like an autonomated system and
will inform the person who likely broke
it. Such a capability is essential in mod-
ern Lean software development.
Important questions should include:
What is the capability to continuously
integrate in the project? How about
other projects in the company? 

This article introduces a grid for
making the CI capability visible. This
can be used for planning improvements
and sharing practices.

In 2005, the grid was introduced in
Nokia Networks, making telecommuni-
cations equipment, with the goal of
measuring the current CI capabilities in

the teams moving to Agile develop-
ment. In the two years that we have
used the grid, it has provided a target
and visibility of improvement in the
area of CI.

History
Daily building was made popular by
Microsoft in the ’90s and cited as a best
practice in the book “Rapid Develop-

ment” [6-8]. Extreme Programming,
introduced in the late ’90s, took daily
building to the extreme and introduced
the concept of CI – check-in in small
steps, then compile and test everything
during each check-in [9, 10]. The intro-
duction of tools such as CruiseControl
[11] makes setting up a CI environment
easier and is making CI more popular.

CI Grid
Background
The ultimate goal of CI is to always have a
shippable, working product. Some features
might not be implemented completely, but

they will not break the product.
In the CI grid, we assume two levels

of automated integration and testing.
The first level is CI. A build in CI is trig-
gered by a very short time-based trigger
(e.g., five minutes) or by a check-in in the
Software Configuration Management
(SCM) system. The system is then com-
piled and tested. Due to the time it takes
to execute all tests in a large project, it is
not useful (or possible) to run all the
tests. In the first level – CI – the focus is
on providing quick feedback. The second
level is daily builds. Daily builds are exe-
cuted nightly. A daily build has a slower
feedback cycle with the result being ready
before the morning. Thus, in daily builds,
the automated test set can be much larg-
er and ideally contains all automated
tests. The shorter CI cycle prevents the
daily build from breaking frequently.

Especially in large product develop-
ment, the CI and daily build can happen
on both whole-product level and on sub-
system level. However, only having CI
and daily build on the subsystem level
causes integration problems and does not
create the ability to have a shippable,
working version of the product every
day. The feedback time for CI is essential
and therefore it might be needed to have
the CI on subsystem level. When having
CI on subsystem level, the daily build can
stay on product level and can catch sub-
system integration problems early.

The described environment is defini-
tively not the only possible way of imple-
menting CI. Two levels might not be the
best solution for very large projects and is
too much for smaller projects. However,
this environment offers a good starting
point for most projects. If tests can be
run easily all the time, then one level
might be enough. If there is trouble run-
ning all tests in the daily build, then focus
should be placed on speeding up the
build and tests. Projects rarely need more
than two levels.

CI Grid Overview
The CI grid is a tool for making CI
capability visible in either an organiza-

Measuring Continuous Integration Capability

Continuous integration (CI) is an important Lean software development practice. Measuring the capability of your CI envi-
ronment provides a road map for improvement and an aid for sharing practices between projects. The CI grid, introduced in
this article, is a simple, question-based metric for checking the current CI capability of a project.

Bas Vodde
Odd-e

22 CROSSTALK The Journal of Defense Software Engineering May 2008

“Software integration is
often a problematic area
in product development.
CI is a common technique
used to overcome these

traditional problems.
CI means that

developers integrate
their software as

frequently as possible ...
to prevent sudden

surprises.”



May 2008 www.stsc.hill.af.mil 23

tion or in a single project. The benefits
of making this visible are:
• Give guidance for projects to

improve their capability.
• Share practices between different

projects. Projects can learn from
each other.

• Give improvements a higher priority.
(What gets measured gets done)
One warning upfront: The grid only

measures the environment and capabili-
ty to use CI. CI is a practice – a habit –
of the development team. The grid does
not measure if developers are integrat-
ing their code frequently.

The grid is a matrix with questions
and metrics. Questions are answered
and a color is filled into the table. There
are four different possible colors:
• Red (white): Not started.
• Yellow (grey): We are working on

this.
• Green (black): Yes, we have this.
• Blue (X): We have no interest in this.

Colors, not numbers, are used for
getting a quick overview. (For this arti-
cle, I’ll use grayscale since the print is
black and white; in real use, I recom-
mend color.)

The metrics are not intended to be
very precise, they can be estimated. The
questions are categorized into three
groups. Each group contains questions
about how well a project is going in:
• Daily build.
• CI.
• Test-driven development (TDD) [12].

Daily Build Questions
The questions in the daily build section are:
1. Compilation

a. Is the whole product compiled
(and linked) every day at a fixed
time automatically?

If the product consists of subsystems
or sub-components then the whole product
here would mean all of these. Automatically
means that no manual intervention is
needed to start the daily build and that the
build itself does not require human atten-
tion either, regardless of whether the
build succeeds or fails.
2. Sanity check

a. Are essential tests run to ensure
the stability of the build?

Essential tests ensure that the main
functionality of the build is working.
Having just the essential test requires
less amount of test automation than the
other questions and, thus, can be done
fairly easy for projects which do not
have much test automation.
3. Unit tests

a. Are all unit tests executed every

day after the build compilation?
b. Are the unit tests that developers

put in the SCM system automati-
cally included in the build without
extra effort from the developers?

In a daily build, it should be possible
to execute all unit tests. It must be easy
for developers to add unit tests to the
build. This is normally done by the
developer putting their tests in the SCM
system.
4. Installation

a. Is the system installed to produc-
tion-like environment every day after
the build compilation?

A production-like environment is the
environment where a finished product
should be installed. This is the hardware
and environment it is running. This
does not mean that it goes live automat-
ically every day. The installation should
also be completely automated.
5. Acceptance tests

a. Are all possible acceptance tests
(e.g., functional/system) execut-
ed?

b. Can people easily (without much
effort) add new acceptance tests?

Some acceptance tests will be run-
ning in the production-like environment. It is
possible that some acceptance tests can-
not be executed daily (e.g., because they
take too long) – they will be excluded.
The acceptance tests are also added to
the build in a similar manner as unit
tests.
6. Reporting

a. Is a failure automatically reported
to the people who might have
broken the build and to others?

b. Is the current status being pub-
lished?

Reporting of the daily build should
also be automated. A common mistake

is to just mail everyone. This leads to
the situation in which people ignore a
failed build (because it is not their fault).
Thus, reporting should be done auto-
matically to the people who potentially
broke the build (anyone who changed
something since the last time it was
working) and also to other interested
parties such as testing or management.
7. Policy

a. Does a broken build (including
tests) become the first priority
for the project?

If a daily build fails then this needs
to be the first priority for everybody in
the project. If this is not true, then daily
builds will start failing and become
completely useless since they do not
provide the visibility and stability in the
project anymore.

CI Questions
The questions in the CI section are:
1. Anytime integration

a. Can, at any time, any developer
integrate his work into the main
branch without too much effort?

Integrate means that the check-in trig-
gers a compile and test. The main branch
means that it is integrated into the total
product source, not on a separate fea-
ture branch.

This question is best understood by
looking at what it does not mean. When
there are specific integration points
(e.g., three-week builds) or when devel-
opers work for weeks on subsystems or
features without integrating it into the
main branch, then there is not an anytime
integration capability (the grid needs to be
filled in with red).
2. Compilation
a. Within an hour after check-in, is the

system automatically compiled?

Check-in

Trigger Time CI Build Time Daily Build Cycle Daily Build Time

Daily Build Feedback

CI Feedback

CI
Build

Daily
Build

Figure 1: CI Environment

Measuring Continuous Integration Capability



The anytime integration should trigger
a compilation of the software. This
works on either a time-based trigger or
on a trigger from the SCM system.

The time to feedback is critical in CI
and, thus, in larger projects this compila-
tion might be done incrementally or even
at the subcomponent level only so that the
feedback comes quickly enough.
3. Sanity check

a. Are essential tests run after the
system is compiled?

The sanity check for CI is likely to be
different than the one from the daily
build. This sanity check consists of
mainly unit tests and some acceptance
tests. It would be best if the build sys-
tem could find the most relevant tests
automatically and execute them. Again,
fast feedback is critical and the sanity
check must not take too long.
4. Reporting

a. Is a failure automatically being re-
ported to the person who integrat-
ed the work?

b. Is the current status being pub-
lished?

The number of people to which a
failure is reported should be smaller
than with the daily build. The current
status should be highly visible to the
team since developers base their inte-
gration decisions on the current build
status [13]. A lava lamp (using a red and

green lava lamp to show the build status
[14]) or a public monitor is a good solu-
tion for achieving this visibility.
5. Policy
a. Does a broken build become the

first priority in the project? (This is
the same as for daily build.)

TDD Question
The question in the TDD section is:
1. Are developers doing TDD?

This question is not directly related
to CI but it is still included in the grid.
Using TDD, a developer’s private work-
space always stays in a working state.
When a developer increases his integra-
tion frequency, then he needs to learn to
work in smaller steps. This is where
TDD makes CI easier. Between the
TDD cycles, a developer checks the sta-
tus of the current build and check-in
when the build passes. When the build
fails, the developer does a few more
TDD cycles and then checks in.

Metrics
The metrics used in the grid are best
explained with a picture of the CI envi-
ronment (see Figure 1 on page 23).
1. Integration feedback time

The integration feedback time is the
time between when a developer is ready
for a check-in and a CI build report. If
a project is not doing anytime integration,

then this is equal to the build feedback
time. Otherwise, this is equal to the trig-
ger time plus the maximum compile and
test time.

For example, when a project uses a
10-minute trigger time, the compilation
lasts five minutes, and the tests take 15
minutes, then the integration time met-
ric would be 30 minutes. In a normal sit-
uation, a developer will know after 30
minutes if the integration has failed or
succeeded.
2. Build feedback time

The build feedback time measures
the build cycle. When a project has daily
builds then this metric should always be
one day. When a project has CI and not
a daily build level then it is less than one
day and the metric is not important any-
more. For example, when a project
makes one complete build every three
weeks then the build feedback time is
three weeks.
3. Test coverage

The last metric in the grid is the test
coverage (during the daily build). This
metric tells something about the validity
of all the other fields in the grid since
most of the questions do not make
sense if the test coverage of the auto-
mated tests is low.

Reviews
When using CI, the effort the developer
spends for integrating code needs to be
minimized. The more effort that is
needed for the developer, the less likely
he or she is to integrate continuously,
and the more likely he is going to save
his work up and integrate in a bigger
batch. This will seem more efficient to
him but counterproductive to CI.

Minimizing the effort before inte-
grating code often means changing
reviewing practices. Formal inspections
are too heavy to do when integrating
multiple times a day. A quick peer-
review and personal reviews might work
better. Another alternative is to delay
the reviewing until after the integration
has been done. This way the developers
can review all changes done – for exam-
ple, once a day or once a week. This is
easy to plan and the reviewing will be
done as a shared effort which also
increases the team learning.
4. Grid Example

Table 1 is an example of the grid
filled in. This example contains four dif-
ferent projects (P1-P4). The grid starts
by listing the technology and platform
for each project. The build environment
is often dependent on platform and
technology and, thus, listing them

Lean Principles

24 CROSSTALK The Journal of Defense Software Engineering May 2008

P1 P2 P3 P4

Technology (Program Language) J, C++ J J C
Platform Lin Lin Lin Hpux
Daily Build
Compilation
Sanity check
Unit testing
Installation
Acceptance tests
Reporting
Policy
Continuous Integration
Anytime integration
Compilation
Sanity check
Reporting
Policy
Test-Driven Development
Metrics (Estimations)
Integration feedback time 24h 15m 24h 3w
Build feedback time 24h 15m 24h 3w
Test coverage ? 50-80 80 ?

Legend Not started
Working on it
We have it

Table 1: Example CI Grid



Measuring Continuous Integration Capability

May 2008 www.stsc.hill.af.mil 25

makes it easier to see which projects you
can share practices with.

P4 is a legacy project which does not
have a daily build at all; its build cycle is
three weeks. Both P1 and P3 have
implemented daily compilation but nei-
ther is able to execute tests automatical-
ly yet. Therefore, their integration feed-
back time and build feedback time is
equal. P2 is a fairly small project and
they chose to only have one cycle (no
daily build since everything within the
CI cycle had been built). However, they
only compile and execute unit tests; they
do not yet have automated installation
and acceptance tests.

From the grid, each project can see
their potential improvement areas: P4
could start implementing daily builds,
P1 and P3 could implement automated
tests, and P2 could focus on automated
installation. Also, from the grid we can
see that the people from P3 might want
to talk to the people from P2 since their
environments are similar and they can
learn from each other.

Conclusion
The grid offers a very simple way of
measuring the CI capability of a project.
It can be completed in 10 minutes and it
then can provide a road map for
improvement and a comparison
between projects. The grid, however,
limits itself to measuring the capability
of the environment and not the usage
of that environment by the people in

the project.u

References
1. Womack, J., and D. Jones. Lean

Thinking. 2nd ed. Free Press, 2003.
2. Poppendieck, M., and T Poppendieck.

Lean Software Development: An Agile
Toolkit. Addison-Wesley, 2003.

3. Poppendieck, M., and T. Poppendieck.
Implementing Lean Software Devel-
opment: From Concept to Cash.
Addison-Wesley, 2006.

4. Ohno, T. Toyota Production System:
Beyond Large-Scale Production.
Productivity Press, 1988.

5. Duvall, P., S. Matyas, and A. Glover.
CI: Improving Software Quality and
Reducing Risk. Addison-Wesley, 2007.

6. Cusumano, M., and R. Shelby. Micro-
soft Secrets. 1995.

7. McCarty, J. Dynamics of Software
Development. Microsoft Press, 1995.

8. McConnell, S. Rapid Development.
Microsoft Press, 1996.

9. Beck, K. Extreme Programming
Explained. Addison-Wesley, 1999.

10. Fowler, M. <www.martinfowler.com/
articles/continuousintegration.html>.

11. “CruiseControl.” Cruise Control <http:
//cruisecontrol.sourceforge.net>.

12. Beck, K. Test-Driven Development.
Addison-Wesley, 2003.

13. Fredrick, J. “Continuous Integration.”
Better Software Magazine Sept. 2004.

14. Clark, M. Pragmatic Project Auto-
mation. The Pragmatic Programmers,
2004.

Interoperability
November 2008

Submission Deadline: June 13, 2008

Data and Data Management
December 2008

Submission Deadline: July 18, 2008

Engineering for Production
January 2009

Submission Deadline: August 15, 2008

Please follow the Author Guidelines for CrossTalk, available on the Internet
at <www.stsc.hill.af.mil/crosstalk>. We accept article submissions on software-related
topics at any time, along with Letters to the Editor and BackTalk. We also provide a

link to each monthly theme, giving greater detail on the types of articles we're
looking for at <www.stsc.hill.af.mil/crosstalk/theme.html>.

CALL FOR ARTICLES
If your experience or research has produced information that could be
useful to others, CrossTalk can get the word out. We are specifically
looking for articles on software-related topics to supplement upcoming
theme issues. Below is the submittal schedule for three areas of emphasis
we are looking for:

Ple
at <ww
topics

lin

we are look

About the Author

Bas Vodde is the owner
of Odd-e, a small con-
sulting company based in
Singapore, that special-
izes in training and
coaching related to Agile

and Lean development. His main inter-
ests are in Scrum and especially how to
use it within large companies and large
projects, and also focuses on technical
practices, especially TDD (including
refactoring) and CI. Vodde believes you
need a well-factored code base if you
want to be fast and flexible. Originally
from Holland, Vodde moved to China
where he worked for Nokia and gained
experience on large projects and the tra-
ditional ways they are run. After this, he
became convinced that Agile is the way
forward for all sizes of projects and
moved to Helsinki, Finland to introduce
Agile and watched teams adopt both
Scrum and Agile practices. His interests
include Lean Production, quality man-
agement, and programming, and he
recently co-authored the book “Large
Agile and Lean Product Development.”

Odd-e Ltd. Pte
Singapore 
E-mail: basv@odd-e.com


