
TDD in C
Bas Vodde - Odd-e

Michael Feathers - Object Mentor

Test-Driven
Development

The single rule of Test-Driven Development (or test-first programming) :

• Only ever write code to fix a failing test

• Write a test (which fails -> “red”)

• Write the code (to make test pass -> “green ”)

• Refactor the code and test (you’re still “green ”)

Unit-test

A test is not a unit test if:

• It talks to the database

• It communicates across the network

• It touches the file system

• It can't run at the same time as any of your other unit tests

• You have to do special things to your environment (such as editing config
files) to run it.

TDD in C

C or C++?

• Why C++ (e.g. gcc):

• Able to use C++ ut framework

• Able to use C++ features in tests

• Why C:

• Not annoyed by the small differences

• Able to use a C compiler.

• E.g. run tests in “real environment”

Compilation

• Fast build:

• Limit dependencies - Especially no header
dependencies!

• Incremental build - Generate dependency
files

• Compile modules/subsystems

• Execute tests in Makefile!

Refactoring

• All manual -> no tools

• It sucks

• Function to Function Pointer refactoring!

TDD Cycle

• Same as in other language

• Take about 20 minutes...

C Design

• C can be used as OO language!

• Good written C is OO

• OO techniques

• Structs with Function Pointers

• Class-structs

• Global function pointers

Structs with FPs
struct A
{
	 void (*openA)(struct A* a);
	 void (*closeA)(struct A* a);
	
// Private
	 int member;
	 int anotherMember;
};

Takes much memory per object

Class-struct
struct classA
{
	 void (*open)(struct A* a);
	 void (*close)(struct A* a);
};

struct A
{
	 struct classA * cls;
// Private
	 int member;
	 int anotherMember;
};

#define A_open(a) (((struct A*)a)->cls->open(a))
#define A_close(a) (((A*)a)->cls->close(a))

Better. Much work though.

Global function ptrs
struct A
{
	 int member;
	 int anotherMember;
};

extern void (*a_open)(struct A*);
extern void (*a_close)(struct A*);

Header
void a_open_imp(struct A*)
{
	 printf("A Open\n");
}

void (*a_open)(struct A*) = a_open_imp;

Source

Simple and allows dynamic stubbing and objects.
Very limited though

Badly structured

Dependencies
separated

Stubbing

• Static

• Preprocessor

• Link

• Dynamic

• Function pointers

Different stubs

• Exploding stubs

• Fail when called

• Generic stubs

• Configurable

• Using function pointers

• Settable

Example test
// Testing FuncB which calls FuncA

TEST_GROUP(FuncBTest)
{
	 static int dummyFuncA()
	 {
	 	 return 1;
	 }
	 void setup()
 	 {
 	 	 UT_FPSET(funcA, &dummyFuncA);
 	 }
 	 void teardown()
 	 {
 	 }
};

TEST(FuncBTest, Ok)
{
	 LONGS_EQUAL(1, funcB())
}

Exercises

Exercise #1

• Test-drive “Hello World”

Exercise #2

• Test drive a simple chat client-server

• Using posix sockets

Exercise #3

• Test-drive a program that counts lines of
code of a C program

• Ignore preprocessor

