
www.odd-e.com | basv@odd-e.com

Agile & Scrum

A very short introduction

Who am I?

•Name: Bas Vodde
•Originally from Holland
• Lives in Singapore

- Lived in China and
Finland

•Works for Odd-e
•Agile coach, SW developer
• Led Agile transformation

program in large company
•Experience with large

embedded products
2

Scaling Lean & Agile
Development

Thinking and Organizational Tools
 for Large-Scale Scrum

Craig Larman
Bas Vodde

Practices for
Scaling Lean & Agile

Development
Large, Multisite, and Offshore Products

with Large-Scale Scrum

Craig Larman
Bas Vodde

3

Short fuse!

4

Agenda

5

•Problems with Sequential Development
•Why Agile?
• Iterative development
•Scrum & Agile Overview
•Core Concepts
•More Scrum
•Misconceptions
•Additional backup material

Sequential Development

6

7

Traditional Development
Requirements

Design

Implementation

Test

Maintenance

Also called waterfall

Problems with
sequential development

8

Late
“real”

feedback

Slow - Handovers

Difficult
to deal
with

changes

Lack of visibility

Known for years

9

Mythical
Man-month

“software crisis”

Changing world

Did it ever work?

10

Original cost of change

11

Cost
of

Change

Time

Cost of Change - Kent Beck

12

Cost
of

Change

Waterfall - Queues
Requirements

Design

Implementation

Test

Maintenance

WIP - Work in Progress

Change

Rework
WIP

Why agile?

14

Perfection Vision

15

Create the organizational ability
to respond to changes by being able to

to deliver or change direction
at any time

without additional cost

Perfection

16

Iterative Development

17

Iterations

18“Grow”

Do

Plan

R
eview

Plan Do

R
eview

Plan Do

1 to 4
weeks

feedback

SW SW
Grows

19

What is in the next iteration?
• Typical selection criteria:

- Business value
- Risk
- Architectural importance

• Who decides:
- In agile methods:

• Scrum: ! ! Product owner
• XP: ! ! ! Customer
• In general: ! Customer, customer rep, product management

20

Agile methods are driven by the customer.
They require involvement of customers.

Timeboxing

21

TimeCost

Scope

?
Project

22

Why time-box?

Prioritization

Keeps focus

Better to slip scope than time

Avoids mini-waterfalls

Requirement #1

Mini-waterfalls?

23The Plan

Plan

R D I R
eview

T

Plan Do

Requirement #2
R D I T

Not a good idea!Why?

Mini-waterfalls?

24

Requirement #1Plan

R D I T

Do

Requirement #2
R D I T

Plan

R
eview

The Reality
Not Done!

Should remove a requirement.
But only choice: Remove test

Requirement #2

Alternatively -
a good agile team

25

Requirement #1

Plan

R

D

Do
I

T

Plan

R
eview

R

D

I

T

Predictive planning

26

A
B

C
D

E
F

G
H

I
J

K
L

Release
Planning

Release
Goal

A-N

M
N

Adaptive planning

27

A
B

C?

Release
Planning

Release
Goal

A-N

Now

Adaptive planning

28

A
B

E
F

Release
Planning

Release
Goal

A-N

Now

Or change in release goal

29

A
B

E
F

Release
Planning

Release
Goal

A-B, E-O

Now

Not iterative when

•Iterations are longer than 4 weeks
•Iteration is not time-boxed
•Team completes specification before programming
•Iteration does not include testing
•Iteration does not produce workable code

30

Also known as “The Nokia-test”

Scrum

31

32

1 day

2-4 week
Sprint

Sprint
Retro-
spective

Sprint
Review

Product Backlog
Refinement

Potentially
Shippable
Product

Increment

Sprint
Planning

Part 2

Sprint
Planning

Part 1
(2-4 h)

(15 min)

Product
Backlog

Product
Owner

(2-4 h) (2-4 h)

 (5-10% of Sprint)

(1.5-3h)

(Feature)
Team

+
ScrumMaster

Sprint
Backlog

Daily
Scrum

www.craiglarman.com
www.odd-e.com

Copyright © C.Larman &
B. Vodde 2009.

All rights reserved.

Agile Manifesto

33

Core Concepts

34

1. Team Teams

35

• Shared work product
• Interdependent work
• Shared responsibility
• Set of working agreements
• Responsibility for managing the outside-team relationships
• Distributed leadership

Shared Responsibility

36

2. Self-managing Teams
• The team together has the authority to:

- Design, plan, and execute their task
- Monitor and manage their progress
- Monitor and manage their process

37

Empowerment

38

Authority Matrix

39

Team’s Own Responsibility

Management
Responsibility

Setting overall direction

Designing the team and
its organizational context

Monitoring and managing
work process and progress

Executing the team task

Manager-
led
teams

Self-
Managing
teams

Self-
Designing
teams

Self-
Governing
teams

Text from: “Leading teams”
By Richard Hackman

3. Cross-functional Teams
• All skills needed to build the product
• Balancing specialization with generalization
• Close cross-functional collaboration

40

Multi-learning

41

Cross-functional teams

42

Architect
Team

Development
Team

Test
Team

Team 1

Team 2

Team 3

Organization

43

Product

Service

&

Support

Product

Owner

Team

Require-

ment

Area

Require-

ment

Area

Undone

Organ-

ization

Scrum

Feature

Team

Scrum

Feature

Team

Scrum

Feature

Team

Product

Test
System

Test

Architect

ure

Develop

ment

Develop

ment

Dev

Team 1

Dev

Team 3

Dev

Team 2

4. Short Iterative
Full-Cycle Feedback

• Feedback
- For improving product
- For improving ways of working

• Iterative - repeating same activities
• Full-cycle - not phased
• Short - typically 2 weeks

44Thanks to Jeff Patton

Inspect-adapt

45

5. Lowering Cost of Change
• Make responding to change economical
• Common strategies:

- Lower work in progress
- Remove duplication
- Lowering complexity
- Automation

46

Improvement

47

Scrum

48

49

1 day

2-4 week
Sprint

Sprint
Retro-
spective

Sprint
Review

Product Backlog
Refinement

Potentially
Shippable
Product

Increment

Sprint
Planning

Part 2

Sprint
Planning

Part 1
(2-4 h)

(15 min)

Product
Backlog

Product
Owner

(2-4 h) (2-4 h)

 (5-10% of Sprint)

(1.5-3h)

(Feature)
Team

+
ScrumMaster

Sprint
Backlog

Daily
Scrum

www.craiglarman.com
www.odd-e.com

Copyright © C.Larman &
B. Vodde 2009.

All rights reserved.

50

product owner

Has product vision
Responsible for
profitability (ROI)
and delivery

51

the team

Team team
Cross-functional
Self-managing
Authority over tasks
Shared responsibility

52
scrum master

Leader & facilitator
Agile coach
Keeper of Scrum
Not a project
manager

Misconceptions

53

54

Untrue, because:
Majority of change impacts product management
Major change in management style
Roles and responsibilities across the organization will be affected

Only an R&D change

Traditional project
management is

compatible with Scrum

55

Untrue, because:
In Scrum there is no project management role
Usually the project management role ceases to exist!!
When project managers are kept, it leads to problems.
Projects are still managed by the three Scrum roles, not a PM

Significant
improvement happen

without significant
changes in

organizational structure
or practices

56

Untrue, because:
Significant changes are required, without it, no significant change
will happen
“We can’t solve problems by using the same kind of thinking we
used when we created them.” (einstein)

Mini-waterfalls

57

Untrue, because:
Agile development is not a series of mini-waterfalls
Work within iterations is completely parallelized and often reversed.

Ad-hoc and ‘hacking’

58

Untrue, because:
Good agile development is much more disciplined than most
traditional ways of working... but it is not waterfall development.

No visibility

59

Untrue, because:
Good agile development increases visibility and predictability
Yet at the same time acknowledges:

Some things are unpredictable
Change will happen!

No change to technical
practices are needed,

only management change

60

Untrue, because:

Organizational agility is
constrained by technical agility

Additional Material

61

Statistics

62

Requirements change

63

0

12.5

25.0

37.5

50.0

10 100 1000 10000 100000

Function points

Pe
rc

en
ta

ge

Unused features

64

Always

7%

Often

13%

Sometimes

16%
Rarely

19%

Never

45%

Programmer Productivity

65

1

28x

Original
1968

Sackman
study

Between
fastest and

slowest

1

14x

Corrected
Sackman

study
(2000)

Between
fastest and

slowest

1

5x

Boehm
study
(1975)

Common
difference

1

4x

Prechelt
(2000)

Between top
quarter

and bottom
quarter

For Software teams.
This difference
is even bigger

66

The difference between the best worker
on computer hardware and the average
may be 2 to 1, if you’re lucky.
With automobiles, maybe 2 to 1.
But in software, it’s at least 25 to 1.
The difference between the average
programmer and a great one is at least
that. The secret of my success is that we
have gone to exceptional lengths to hire
the best people in the world. And when
you’re in a field where the dynamic range
is 25 to 1, boy, does it pay off.

Ref: gigaom.com/apple/steve-jobs-the-lost-years/

67

83%

Accelerated
Time-to-Market

100

80

60

40

20

0

Reduced
Software Defects

84%

65%

Reduced Cost

≥10%

89%

Increased
Productivity

56%

≥25%

57%
55%

29%

%
 Im

pr
ov

em
en

t R
ea

liz
ed

Improvements from adopting agile
 (VersionOne) survey

Barriers to adopting agile
 (VersionOne) survey

680 10 20 30 40

Ability to change organizational culture - 45%

General resistance to change - 44%

Personnel with the necessary Agile experience - 42%

Management Support - 32%

Project Complexity or Size - 23%

Customer Collaboration - 22%

Con!dence in ability to scale Agile methods - 17%

Perceived time to transition - 14%

Budget Constraints - 10%

What are the barriers to further adoption of Agile in your current organization?
(select all that apply)

Organizational Impediments
10. !Failure to remove organizational impediment
9. ! Misguided cost savings and synergy efforts
8. ! Lack of training
7. ! Single-function groups
6. ! Local vs. global optimization
5. ! Assumptions that book learning is enough
4. ! Individual performance evaluation and reward
3.! Unrealistic promises
2.! Assuming agile is all about developers
1.! Silver bullet thinking and superficial adoption

69

Lean

70

71

Watch the baton,
not the runners

Lean &
Toyota Production System

72

Produce according to
demand and no more.
To be able to respond

to changes in the
market

“At a time when all of us are
struggling to implement lean

production and lean management,
often with complex programs on an
organization-wide basis, it is helpful
to learn that the creators of lean had

no grand plan and no company-
wide program to install it.”

73Text from: “Birth of Lean”

Kaizen

Improve for
improvements sake

Everybody in the
organization, not a

specialized
improvement group

74

Gemba

75

	 public CppUTestParserListenerEventListCreator createParserListenerEventListCreator() {
	 	 return new CppUTestParserListenerEventListCreator();
	 }
	
	 public String getLineQualifier() {
	 	 return escapeForRegex(LINE_QUALIFIER);
	 }

	 public final String getComprehensiveLinePattern() {
	 	 return LINE_QUALIFIER + "(.*)(.*)(\\n)";
	 }

Go and See
“I urge you to make a

special effort to see what's
happening in the workplace.
That's where the facts are.
And the truth is hidden in

the facts”

76Text from: “Birth of Lean”

77

Managers as Teachers

78

Avoid:
- Becoming stuck in bureaucracy
- Command people what to do

“Through education and
training, subordinates

become reliable, and the
span of control becomes

larger and larger.
My ideal is to have one
supervisor for every one

hundred workers” Text from: “Total Quality
Control the Japanese Way” by
Koaru Ishikawa

Stop & Fix

79

Seven Wastes

1. Over-production
2. Inventory
3. Motion
4. Waiting
5. Transportation
6. Over-processing
7. Defects

80

Ten Wastes -
Software Development

81

1. Overproduction of features
2. Waiting, delay
3. Handoff
4. Extra process
5. Partially done work
6. Task Switching
7. Defects
8. Under-realizing people’s potential
9. Knowledge scatter
10. Wishful thinking

Defer commitment

82

Especially relevant for
architectural decisions!

TimeC
u

s
to

m
e

r
U

n
d

e
rs

ta
n

d
in

g
 &

P
ro

d
u

c
t

K
n

o
w

le
d

g
e

Decisions likely wrong.

Made with the least

amount of knowledge

More chance that

the decision is good.

Made with the max

amount of knowledge

last responsible
moment

83Management applies and teaches lean thinking,

and bases decisions on this long-term philosophy

Respect

for People

- donʼt trouble

 your ʻcustomerʼ

- “develop people,

 then build products”

- no wasteful work

- teams & individuals

 evolve their own

 practices and

 improvements

- build partners with

 stable relationships,

 trust, and coaching

 in lean thinking

- develop teams

Sustainable shortest lead time, best quality and value (to people

and society), most customer delight, lowest cost, high morale, safety

Product Development

- long-term great engineers

- mentoring from manager-

 engineer-teacher

- cadence

- cross-functional

- team room + visual mgmt

- entrepreneurial chief

 engineer/product mgr

- set-based concurrent dev

- create more knowledge

14 Principles

long-term, flow, pull, less

variability & overburden,

Stop & Fix, master norms,

simple visual mgmt, good

tech, leader-teachers from

within, develop exceptional

people, help partners be

lean, Go See, consensus,

reflection & kaizen

Continuous

Improvement

- Go See

- kaizen

 - spread knowledge

 - small, relentless

 - retrospectives

 - 5 Whys

 - eyes for waste

 * variability, over-

 burden, NVA ...

 (handoff, WIP,

 info scatter,

 delay, multi-

 tasking, defects,

 wishful thinking..)

- perfection challenge

- work toward flow

 (lower batch size,

 Q size, cycle time)

www.craiglarman.com

www.odd-e.com

Copyright © 2009

C.Larman & B. Vodde

All rights reserved.

Technical Agility

84

How much education is
there related to product

development work?

85

+ Using your editor
+ Refactoring
+ Clean Code
+ Removing dependencies
+ Advance C++ design

Codebase Quality

86

Original program:

Making changes:

More changes:

Without refactoring:

Cost of change
increases rapidly!

With refactoring:

Small change

Refactor

Etc

Cost of change
not increases

Creating Legacy Code

87

c
o
d
e
/d

e
s
ig

n
 q

u
a
lit

y

time

code base quality

e
ff
o
rt

 n
e
e
d
e
d
 f
o
r

c
h
a
n
g
e

time

responsiveness to change
 r
ew

rit
e rewrite

∞

www.craiglarman.com

www.odd-e.com

Copyright © 2010

C.Larman & B. Vodde

All rights reserved.

Solve the root cause!

88

c
o
d
e
/d

e
s
ig

n
 q

u
a
lit

y

time

code base quality

e
ff
o
rt

 n
e
e
d
e
d
 f
o
r

c
h
a
n
g
e

time

responsiveness to change

www.craiglarman.com

www.odd-e.com

Copyright © 2010

C.Larman & B. Vodde

All rights reserved.

Continuous Integration
Continuous Integration is a developer practice
with the goal to always keep a working system
by making small changes, slowly growing the system
and integrating them at least daily
on the mainline
typically supported by a CI system
with lots of automated tests

89

CI System

90

Developer
SCM system

Continuous
Integration

server

checks in after
running tests locally monitor

compile

developer
test

install /
deploy

customer-facing
tests

any step
failed?

1. find out
who broke
the build

2. send an
e-mail/SMS

“Fix the build”

triggered on

change in code

www.craiglarman.com

www.odd-e.com

Copyright © 2010

C.Larman & B. Vodde

All rights reserved.

Large

91

Feature teams

92

Team has the necessary knowledge and skills to complete

an end-to-end customer-centric feature. If not, the team is

expected to learn or acquire the needed knowledge and skill.

Feature team:

- stable and long-lived

- cross-functional

- cross-component

customer-

centric

feature

potentially

shippable

product

increment

Product

Backlog

www.craiglarman.com

www.odd-e.com

Copyright © 2010

C.Larman & B. Vodde

All rights reserved.

93

Item 1

Item 2

Item 3

Item 4

...

…

system

comp

C

Team

comp

A

Work from multiple teams is required
to finish a customer-centric feature.
These dependencies cause waste
such as additional planning and
coordination work, hand-offs
between teams, and delivery of
low-value items.
Work scope is narrow.

Product

Owner

comp

B

Team

comp

A

Team

comp

B

comp

C

Item 1

Item 2

Item 3

Item 4

...

…
Team

Wu

Product

Owner

Team

Shu

Team

Wei

system

comp

A

comp

B

comp

C

Every team completes customer-
centric items. The dependencies
between teams are related to shared
code. This simplifies planning but
causes a need for frequent
integration, modern engineering
practices, and additional learning.
Work scope is broad.

Component teams Feature teams

www.craiglarman.com

www.odd-e.com

Copyright © 2010

C.Larman & B. Vodde

All rights reserved.

94

1 day

2-4 week

Sprint

Sprint

Retrospective

Sprint

Review

Joint

Retro-

spective

Product Backlog

Refinement

Potentially

Shippable

Product

Increment

Sprint

Planning

Part 2

Sprint

Planning

Part 1

(2-4 h)

(15 min)

Product

Backlog

Product

Owner

(2-4 h)
(2-4 h)

 (5-10% of Sprint)

(1.5-3h)

Scrum

Feature

Team

+

ScrumMaster

Sprint

Backlog

Daily

Scrum

www.craiglarman.com

www.odd-e.com

Copyright © C.Larman and B. Vodde 2008.

All rights reserved.

Large-scale Scrum for up to 10 teams with one Product Owner

Transition

95

Item 1

Item 2

Item 3

Item 4

…

…

Comp A

Team

Comp B

Team

Comp C

Team

Component

A

Component

B

Component

C

Product

Owner

Feature

Team

Red

tasks for A

tasks for B

tasks for A

tasks for B

tasks for A

tasks for C

contains ex-members

from component

teams A, B, and C,

and from analysis,

architecture, and

testing groups

system

www.craiglarman.com

www.odd-e.com

Copyright © 2010

C.Larman & B. Vodde

All rights reserved.

Resources

96

Books

97

Books - Scaling

98

Scaling Lean & Agile
Development

Thinking and Organizational Tools
 for Large-Scale Scrum

Craig Larman
Bas Vodde

Practices for
Scaling Lean & Agile

Development
Large, Multisite, and Offshore Products

with Large-Scale Scrum

Craig Larman
Bas Vodde

99

