
The Trouble with
“Component Teams”

and
and alternative:
“Feature Teams”

or “Scaling Scrum”

バスはどれでしょう？

or 八斯是!？

Scaling Lean & Agile
Development

Thinking and Organizational Tools
 for Large-Scale Scrum

Craig Larman
Bas Vodde

Practices for
Scaling Lean & Agile

Development
Large, Multisite, and Offshore Products

with Large-Scale Scrum

Craig Larman
Bas Vodde

Conway’s law

Any organization that designs a system
(defined more broadly here than just
information systems) will inevitably produce
a design whose structure is a copy of the
organization's communication structure.

And...

Because the design that occurs first is almost
never the best possible, the prevailing system
concept may need to change. Therefore,
flexibility of organization is important to
effective design.

- Mel Conway

One ProductOwner

Multiple Teams

Teams own a part of
the system:

“Component teams”

Low value work is
implemented

Everybody always
busy?

“Work gets created”

Large systems... grow
larger by default

One requirement
does not map to one
team

Dependencies never
balance out

Result: Not complete
requirements
integrated

Assign a problem to a
role

Impossible job,
requirements never
balance out.

Result: priority and
resource fights

Large backlog items
must be split in “less
customer-centric
backlog items”

Splitting before the
iteration starts:
“Architecture”

Testing after the
iterations ends:
“System test”

How to become
good? ...

One ProductOwner

3 Teams

Give complete
requirements to
teams:
“Feature teams”

All dependencies
within the team

Feature Teams

• long-lived—the team stays together so they can
‘jell’ for higher performance; they take on new
features over time

• cross-functional and co-located

• work on a complete customer-centric feature,
across all components and disciplines

• composed of generalizing specialists

New problem:

Dependency moved

Modern version
control (e.g. svn)

Continuous
integration
development practice

Automated build and
test

Person specialization

Team specialization

Team specialization

Specialization good

Don’t let
specialization
constrain you

Learn new
specializations

Emergent design

Component
guardians

Community of
Practice

Architect Facilitator

Same for e.g. test,
ScrumMasters

Transition can often
be done by reforming
teams

What about large
product development?

Always have one
product owner and
one product backlog
per product

Or... a group of
products...

Group requirements
into “categories”
called:
“Requirement areas”

Grouping based on
customer, NOT on
architecture

Create “requirement
area backlogs”

RA backlog is a view
on the product
backlog

Every PBI maps
always to exactly one
RA backlog

Every RA has their
own “area product
owner”

RA product owner
specializes in
“customer-centric
domain”

Every RA has a set of
feature teams

From 5-10 per RA

Teams specialize in
that area

Areas are dynamic
over time

Overall PO decides
on moving teams
between areas

Value vs velocity

Transition strategy

“Development areas”
are groupings based
on architecture

Helps transition, has
all drawbacks of
component teams

Questions?

