N :) @
- ok @)

Scaling Scrum
with Feature
Teams

=

Agenda

Introduction
Before we start -> Some basics

Feature teams and component teams

o)

Introduction

7
>

&

L

nTc

o
&

A

X
/

?
53
HiZ2T

JAN

r

O

Scaling Lean & Agile
Development

Thinking and Organizational Tools
for Large-Scale Scrum

Craig Larman
Bas Vodde

Practices for
Scaling Lean & Agile
Development

Large, Multisite, and Offshore Products
with Large-Scale Scrum

Craig Larman
Bas Vodde

o)

Some basics

"e» \
v - -
- . -
‘ - ’
/ ‘\ ® ‘
ot ’
- ’ ' e
7/ r

Scrum

Sprint Sprint
Planning Planning
Part 1 Part 2
Q4m (2-4 h)

Scrum
@ H_J Feature
Team

Product
Owner

Product
Backlog

Daily
Scrum
(15 min)

+
ScrumMaster

5

Sprint
Backlog

Product Backlog

Refinement
(5-10% of Sprint)

Potentially
Shippable
Product
Increment

Sprint
Sprint Retro-
Review spective
(2-4 h) (1.5-3h)

-0—0

www.craiglarman.com
www.odd-e.com

Copyright © C.Larman &
B. Vodde 2008.
All rights reserved.

Continuous Integration

Continuous Integration is a developer practice
with the goal to always keep a working system

by making small changes, slowly growing the
system

and integrating them at least daily
on the mainline

typically supported by a Cl system
with lots of automated tests

O

checks in after
running tests locally >

Developer

send an
e-mail/SMS
“Fix the build”

any step
failed?

SCM system

find out
who broke
the build

<

monitor

A Ltriggered on change in code.

www.craiglarman.com
www.odd-e.com

Copyright © C.Larman &
B. Vodde 2009.
All rights reserved.

—

W,

Continuous
Integration
server

/.

compile

unit test

install /
deploy

acceptance
tests

any other

.‘.‘.‘.‘.

tests

Scaling Cl system

low-level
feature teams | component Cl
| systems
I s~
I)
|
Developer |
DeveIoperO _ omponent Iow level
Architect / | Cl system

@‘

> |component

Tester

O

|
s I

O low-level
|:| Developer | === :CIZSEGQ
Developer
O Architect
|
Tester |
| omponent Iow IeveI
| Cl system

higher-level
feature ClI
systems

| feature-level |
Cl system

feature-level |
Cl system

feature level |
Cl system

\

__4__

|system-level |

dain build

|

|

|

|

|
daily build |
A |
|

|

|

|

|

|

www.craiglarman.com
www.odd-e.com

Copyright © C.Larman &
B. Vodde 2009.
All rights reserved.

10

Larg

Product Owner

[N

Product
Backlog

e-scale setup

Developer SerumMaster Customer Doc

® @ ®
e . 0 O
Tester : nteraction

. Architect Designer
Analyst

S o
Developer ScrumMaster Customer Doc
[4 @) o

. Interaction
Tester Arch -
. rchitect Designer
Analyst

Developer ScrumMaster Customer Doc

4 @ ®
@ . 0 O
Tester . nteraction

‘ Architect Designer
Analyst

11

o)

Feature teams

Conway’s law

Any organization that designs a system
(defined more broadly here than just
information systems) will inevitably produce
a design whose structure is a copy of the
organization's communication structure.

And...

Because the design that occurs first is almost
never the best possible, the prevailing system
concept may need to change. Therefore,
flexibility of organization is important to

effective design.

- Mel Conway

One ProductOwner

Multiple Teams

Teams own a part of
the system:

“Component teams”

Low value work is
implemented

Everybody always
busy!?

Re Vesinh
Ke QJ(L,1eclure

“Work gets created”

Large systems... grow
larger by default

One requirement
does not map to one
team

Dependencies never
balance out

Result: Not complete
requirements
integrated

Assign a problem to a
role

Impossible job,
requirements never
balance out.

Result: priority and
resource fights

L

/l \/“

Ty

Ll

]
»
[g

Al

R(’. \//';‘Q

K({ l)(.)‘f,»ic
}—\)(’ H/(, L~,3

h
eclure

Large backlog items
must be split in “less

customer-centric
backlog items”

i ' < ‘0'
N N leve |
\ 1./
e —
ST pu—
:\\"\\ p—
- A
2D B W
: N\ N
\ /
»
x\.i
N V)t
1
. ('
Ke

.....

Splitting before the
iteration starts:

“Architecture”

Testing after the
iterations ends:
“System test”

How to become
good? ...

————

Give complete
requirements to
teams:

“Feature teams”

1

—
—
—
—
—
 E—
 um—
—_——
—_— -
—
| —
—
——
S
——

All dependencies
within the team

Feature Teams

long-lived—the team stays together so they can
‘jell’ for higher performance; they take on new
features over time

cross-functional and co-located

work on a complete customer-centric feature,
across all components and disciplines

composed of generalizing specialists

—

A

L

(VY T

New problem:

Dependency moved

)

71T\S
L
el Jilh

MUY

AF]

-——
———
—_—
-—
———
-
—_—
-—
——

AL L R TR T

A7

—
:

Modern version
control (e.g. svn)

Continuous
Integration
development practice

Automated build and
test

Person specialization

Team specialization

Team specialization

Specialization good

Don’t let
specialization
constrain you

Learn new
specializations

—

IR LARIR R

Emergent design

Component
guardians

Community of
Practice

l
;

Architect Facilitator

=

:— :

5o \\:f\\ | .
o] \(O
=iyl \ L]} \

Same for e.g. test,
ScrumMasters

Transition can often

be done by reforming
teams

WWhat about large
product development?

~

y

— T —

O -

ARRARTRARRRRARAY

/
Sy

Always have one
product owner and
one product backlog
per product

Or...a group of
products...

Group requirements
into “categories”

called:
“Requirement areas’

£

)

e——

Grouping based on
customer, NOT on

architecture

—y—

AT

4

(|'|‘\“"\|\|

4

————

SV TNy nn

P—

(’l(\‘T\ll\l‘(

‘UH[[I(H(

Create “requirement
area backlogs”

RA backlog is a view
on the product
backlog

Every PBl maps
always to exactly one
RA backlog

Every RA has their
own “area product
owner”’

mnmj 71,0

AO

| —

JILRLA AT

RA product owner

specializes in

'i “customer-centric
domain’

|‘\\\'\\|\||

——

YOV

{ 11)
)

Every RA has a set of
feature teams

THTIAL

)
J

JUIIMTIAAM I Y e
o) A\
O

From 5-10 per RA

/

ARRRARRIN

Teams specialize in
that area

-

HEEER

—
-—
—
—
-—
—
—
—_—
-_—
-
—
—
—
—
pr—
-—

.
T 0

Areas are dynamic
over time

AR

!

Overall PO decides
oh moving teams
between areas

24 AL

TTTOINTY

!

Raked
-—
—
-
-
——
-
-—
—
—
-
—_—
-
——

Value vs velocity

ou—
 —
E—
 Qu—
—
E—
a—
| ——
S —
—
—
—
——
—
——
_—

[
AR
)

Transition strategy

-

| __fz/

o

U

] Q[

“Development areas”™
are groupings based
on architecture

Helps transition, has
all drawbacks of
component teams

Product
Owner

ltem 1 /

ltem 2

Component

ltem 2 for A - A

ltem 2 for B -

ltem 3 for A 1
ltem 3 for B Component
B

ltem 4 for A 1
ltem 4 for C -

Component
C

Questions!

