
www.odd-e.com

Things you need to know
about managing software
development

For Agile Singapore

Who am I?

•Name: Bas Vodde
•Originally from Holland
• Lives in Singapore

- Lived in China and
Finland

•Works for Odd-e
•Agile coach, SW developer
•Experience with large

embedded products

2

Scaling Lean & Agile
Development

Thinking and Organizational Tools
 for Large-Scale Scrum

Craig Larman
Bas Vodde

Practices for
Scaling Lean & Agile

Development
Large, Multisite, and Offshore Products

with Large-Scale Scrum

Craig Larman
Bas Vodde

Avoid Taylor

3

Konosuke Matsushita (1)

4

"We will win and you will lose. You cannot
do anything about it because your failure is

an internal disease. Your companies are
based on Taylor's principles. Worse, your

heads are Taylorized, too. You firmly
believe that sound management means

executives on one side and workers on the
other, on one side men who think and on

the other side men who can only work. For
you, management is the art of smoothly
transferring the executives' ideas to the

workers' hands.”

Konosuke Matsushita (2)

5

“We have passed the Taylor stage. We are aware that business has
become terribly complex. Survival is very uncertain. Therefore, a

company must have the constant commitment of the minds of all of its
employees to survive. For us, management is the entire workforce's

intellectual commitment at the service of the company.

We know that the intelligence of a few technocrats—even very bright
ones—has become totally inadequate to face these challenges. Only
the intellects of all employees can permit a company to live with the

ups and downs and the requirements of its new environment. Yes, we
will win and you will lose. For you are not able to rid your minds of the

obsolete Taylorisms that we never had.”

6

There is no question that the
cost of production is lowered by

separating the work of
planning and the brain work

as much as possible from the
manual labor

Scientific Management
• Application of Science to find “one best method”
• Separation of “‘planning/improving” and execution

• Strongly influenced existing management practices:
- Project Management
- Management by Objectives
- Incentive systems
- Sig Sigma / CMMi

7

Deming / Juran

8

The Taylor System
has become so

obsolete that is should
be replaced.

Remove barriers that
rob people of their

right to pride of
workmanship

TEAM = PRODUCT

9

Jim McCarty

10

Anything you need to
know about the team can

be discovered by
examining the product,

and visa versa

TEAM = PRODUCT

http://www.mccarthyshow.com/the-23-rules-of-thumb/

Team = Product
• Focus on improving people!

- Working together, sharing work!
- Books, movies, learning sessions.
- Training, coaching.

• More than on:
- Process (let the people do that!)
- Metrics... also for people themselves

11Avoid adding people!

People matter *most*!

12

1

28x

Original
1968

Sackman
study

Between
fastest and

slowest

1

14x

Corrected
Sackman

study
(2000)

Between
fastest and

slowest

1

5x

Boehm
study
(1975)

Common
difference

1

4x

Prechelt
(2000)

Between top
quarter

and bottom
quarter

For Software teams.
This difference
is even bigger

Joel Spolsky

13

It's not just a matter of "10 times more productive."
It's that the "average productive" developer never
hits the high notes that make great software.
http://www.joelonsoftware.com/articles/HighNotes.html

14

What is the most often-overlooked
risk in software engineering?

Incompetent programmers. There are
estimates that the number of
programmers needed in the U.S.
exceeds 200,000. This is entirely
misleading. It is not a quantity problem;
we have a quality problem. One bad programmer can easily
create two new jobs a year. Hiring more bad programmers will just
increase our perceived need for them.
If we had more good programmers, and could easily identify them,
we would need fewer, not more.

David Parnas

Understand: Motivation

15

Autonomy

MasteryPurpose

Work re-design

16

Principles of Job Enrichment:

1. Combine tasks
2. Form natural work units
3. Client relationships
4. Vertically load the job
5. Feedback channels

1722

My passion has been to build an enduring
company where people were motivated
to make great products. Everything else
was secondary. Sure, it was great to
make a profit, because that was what
allowed you to make great products.

Ref: http://hbr.org/2012/04/the-real-leadership-lessons-of-steve-jobs/

Knowledge Creation

18

Knowledge Creation

19

Knowledge / Time

20
TimeC

u
s
to

m
e
r

U
n
d
e
rs

ta
n
d
in

g
 &

P
ro

d
u
c
t
K

n
o
w

le
d
g
e

Decisions likely wrong.

Made with the least

amount of knowledge

More chance that

the decision is good.

Made with the max

amount of knowledge

Accurate Early Estimagics

21

22

Improve
Software

Increase
Learning

Nature of Software

23

24

Gardening - Hunt / Thomas

25

Rather than construction, software is
more like gardening -- it is more organic than

concrete.

You constantly monitor the health of your
garden, and make adjustments as needed.

People are comfortable with the metaphor of
building construction: it is more scientific

than gardening, it’s repeatable.

But we’re not building skyscrapers -- we
aren’t as constrained by the boundaries of

physics and the real world.

26

27

Refactoring visualized

28

Original program:

Making changes:

More changes:

Without refactoring:

Cost of change
increases rapidly!

With refactoring:

Small change

Refactor

Etc

Cost of change
does not increase

29

Legacy Being Created

Refactoring

30

Safety net - Unit tests

31

2 main causes of legacy

32

Pressure for unrealistic
commitments

Lack of skill

33

Manage
Products

Not
Projects

Not all work must be done in “projects.”
That is simply one way of organizing work.

Missing metrics

34

Productivity

35

Productivity - Martin Fowler

36

We see so much emotional discussion about
software process, design practices and the like.

Many of these arguments are impossible to resolve
because the software industry lacks the ability to

measure some of the basic elements of the
effectiveness of software development. In particular

we have no way of reasonably measuring
productivity.

Productivity, of course, is something you determine
by looking at the input of an activity and its output.
So to measure software productivity you have to

measure the output of software development - the
reason we can't measure productivity is because

we can't measure output.
http://martinfowler.com/bliki/CannotMeasureProductivity.html

Technical Debt

37

38

 Ohno / Deming

Don’t look with your eyes,
look with your feet...

people who only look at the
numbers are the worst of all.

Deadly Disease #5

Running a company on
visible figures alone

Example: Test Coverage

39

Metrics and their use...

40

Don’t focus on the
metric and the numbers

But on who sets them
and how they use them

Go and See

41

Performance Reviews

42
http://online.wsj.com/article/SB122426318874844933.html

http://www.vanityfair.com/online/daily/2012/07/microsoft-downfall-emails-steve-ballmer

43

Point #12

Remove barriers that rob people of their
right to pride of workmanship. This means
abolishment of the annual or merit rating.

Deming

Deadly Disease #3

Evaluation by performance, merit
rating, or annual review of

performance

System Dynamics

44

Systems Thinking

45

• Making better decisions by seeing:

• Systems dynamics
- What variables are there,

how do they relate?
- Especially considering time

• Mental models
- What assumptions are there?

• Root causes
• Optimizations

- and local optimizations

• And... Go and See

Example: Refactoring

46

amount of bad

code

panic

amount of code

smells

time spend on

bug fixing

motivation

developers

quick hacks

opportunity for

of bugs

indicates

O

refactoring

O

Example:
Product Management

47

difficult-to-achieve

promises to customers
(new feature)

development

speed

of quality-destroying and

other shortcuts to apparently

meet the contract

Goal:

get sales

commissions

difference

between

R&D

capability

and

commitment

customer

satisfaction

& trust in us

- bad quality

- # defects

- # good people

 who quit

O

O

O

QF

O

O

P-M

flexibility and control

of product content,

release date, and

investment

Goal:

meet competitor

offer to get deal

ROI of resource

allocation

decisions

competitors promise

matching plus extra

features

customer wants

"everything" from usGoal:

differentiate to

compete

QF

transparency

in R&D

O

O

O

O

time until

feedback

O

sequential life-

cycle practices

O

O

QF

O

same dynamic

in competitors

P-M

collaboration

& trust with

R&D

- # of features

- lines of code

O

effort dedicated

to maintenance

of existing code

customer

collaboration

handing over

commitments

by negotiating

a contract

with R&D

R&D expected to

"meet their

commitments"

transparency in

organization

www.craiglarman.com

www.odd-e.com

Copyright © 2010

C.Larman & B. Vodde

All rights reserved.

Closing

48

Principles of Managing
Software Development

49

• Be aware of Taylor
• Team == Product
• Software Development is Knowledge Creation
• The Nature of Software is to Grow Ugly
• The 2 Forever Missing Metrics

Meta-principle:
Systems Thinking

Questions

50

